下一代串行數(shù)據(jù)標準采用的高速率已經(jīng)進入到微波領域。比如,即將到來的SuperSpeed USB(USB 3.0)通過雙絞線對線纜傳輸速的率就達到了5Gb/s。通過連接器和線纜傳輸如此高的速率必須考慮通道的不連續(xù)性引起的失真。為了將失真程度保持在一個可控的水平,標準規(guī)定了線纜和連接器對的阻抗和回波損耗。最新的測量使用S參數(shù)S11表征而且必須歸一化到線纜的90歐姆差分阻抗。
當測量USB 3.0通道的S參數(shù)時,可選的儀器是時域反射計或TDR。TDR系統(tǒng)通常往待測器件注入一個階躍電壓信號然后測量是時間函數(shù)的反射電壓。差分測量通過產(chǎn)生極性相反可相對定時的階躍電壓對實現(xiàn)。這篇文章中談到的都是差分信號。
反射電壓與發(fā)射器和待測器件之間的阻抗失配成比例,關系如下式:
Z0 是源阻抗,ZL(t)是待測器件的阻抗,r(t)是反射系數(shù),Vr(t)/Vi(t)是入射和發(fā)射電壓的比率。式(1)假設到待測器件的源,線纜和連接器都是匹配的,但事實上這種情況很少見。為了補償線纜和連接器的不理想,參考平面校正(基線校正)通常進行開路,短路,負載校準。調(diào)整式 (1)可以得到待測器件的阻抗和時間(或距離)的函數(shù),所以可以使用校準過的TDR做阻抗測量。
圖1展示了USB 3.0 帶有連接器線纜的的阻抗曲線。曲線表明了隨著TDR 階躍信號在線纜中的行進阻抗變化是時間的函數(shù)。注意軌跡兩頭的阻抗變化,那是由于連接器引起的,當使用上升時間100ps (階躍信號)測試時連接器的阻抗規(guī)定是90+/- 7歐。TDR的上升時間非常重要,因為阻抗變化和TDR階躍信號的上升時間成反比,而規(guī)范規(guī)定的USB 3.0信號的上升時間是100 ps,測量中匹配這個上升時間將給出信號“看到的”阻抗。
Figure 1: Differential impedance vs. time measurement for USB3.0 cable and mated connectors
圖1:USB 3.0帶有連接器線纜的 差分阻抗 vs 時間 測量
回波損耗或S11 是頻域的測量和反射系數(shù)有關。歸一化(通過反射平面校準 基線校正)反射系數(shù)的傅里葉變換給出了回波損耗是頻率的函數(shù)。圖2給出了USB 3.0線纜和連接器測量的結(jié)果。圖中的橫軸表示2GHz/div,范圍是0~20GHz,縱軸表示10dB/div?;夭〒p耗在2GHz大約是15dB,但隨著頻率的增加開始變得越來越小。精細的空值間隔是由線纜末端的連接器引起的,較大的空值間隔是由于連接器內(nèi)部的阻抗結(jié)構(gòu)決定的。
Figure 2: Differential return loss for USB3.0 cable with mated connectors
圖2: USB 3.0 帶有連接器線纜的差分回波損耗
回波損耗可以參考圖1中線纜和連接器阻抗是90歐而TDR系統(tǒng)差分阻抗是100歐,由于USB 3.0發(fā)射機阻抗是90歐,這個不匹配人為地減少了回波損耗。為了正確的表達回波損耗,將阻抗轉(zhuǎn)化為測試到的S11 是非常必要的,轉(zhuǎn)換關系由下式給出。
and
(2)
轉(zhuǎn)化可以分為兩步。首先,用特征阻抗是100歐姆的測試系統(tǒng)得出的復數(shù)S參數(shù)計算出復數(shù)的負載阻抗。其次,用新的90歐姆參考阻抗計算出負載阻抗的S參數(shù)?;夭〒p耗是頻率的函數(shù),所以可以計算出每個頻點的S參數(shù)。
舉個例子,用100歐姆阻抗表征的復合回波損耗S11 = 0.53 - 0.12J 轉(zhuǎn)換到90歐姆的如下:
式2 用來將圖2中測到的插損 轉(zhuǎn)換到90歐姆差分阻抗。圖3中的兩個曲線給出了100歐姆和90歐姆特征阻抗的的回波損耗。
Figure 3: Return loss measured with 100 ohm reference (dotted line) and 90 ohm (solid line) reference
圖3:100 歐姆(虛線)和90歐姆參考(實線)的回波損耗
USB 3.0 線纜和連接器的差分阻抗可以使用校正的TDR系統(tǒng)測量插損而得出。通過對連接到待測器件的參考平面(基線校正)運行開路,短路,負載進行校正。通過簡單的轉(zhuǎn)換測試系統(tǒng)和待測器件之間的不同阻抗進行插損補償。
References
參考:
[1] “Time Domain Spectrum Analyzer and "S" Parameter Vector Network Analyzer”, James R. Andrews, Picosecond Pulse Labs application note AN-16a, November 2004
[2] “converting s-parameters from 50-ohm to 75-ohm Impedance”, Dallas Semiconductor/Maxxim application note November 21, 2003
USB 3.0線纜和連接器的阻抗和插損測試
發(fā)布時間:2009-09-24 來源:美國力科
特別推薦
- 從失效案例逆推:獨石電容壽命計算與選型避坑指南
- 性能與成本的平衡:獨石電容原廠品牌深度對比
- 精密信號鏈技術(shù)解析:從原理到高精度系統(tǒng)設計
- 儀表放大器如何成為精密測量的幕后英雄?
- 儀表放大器如何驅(qū)動物聯(lián)網(wǎng)終端智能感知?
- 連偶科技攜“中國IP+AIGC+空間計算”三大黑科技首秀西部電博會!
- 優(yōu)化儀表放大器的設計提升復雜電磁環(huán)境中的抗干擾能力
技術(shù)文章更多>>
- 戰(zhàn)略布局再進一步:意法半導體2025股東大會關鍵決議全票通過
- μV級精度保衛(wèi)戰(zhàn):信號鏈電源噪聲抑制架構(gòu)全解,拒絕LSB丟失!
- 破解工業(yè)電池充電器難題:升壓or圖騰柱?SiC PFC拓撲選擇策略
- 搶占大灣區(qū)C位!KAIFA GALA 2025AIoT方案征集收官在即,與頭部企業(yè)同臺競逐
- 從單管到并聯(lián):SiC MOSFET功率擴展實戰(zhàn)指南
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
磁傳感器
磁環(huán)電感
磁敏三極管
磁性存儲器
磁性元件
磁珠電感
存儲器
大功率管
單向可控硅
刀開關
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點膠設備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機控制
電解電容
電纜連接器
電力電子