你的位置:首頁 > 電源管理 > 正文

短溝道MOSFET散粒噪聲測試方法研究

發(fā)布時間:2011-08-25

中心議題:

  • 短溝道MOSFET中散粒噪聲測試原理
  • 短溝道MOSFET中散粒噪聲的測試系統(tǒng)設計及測試方案
  • 短溝道MOSFET中散粒噪聲的測試結果及討論


對于短溝道MOSFET器件,在室溫條件下,散粒噪聲被其他類型的噪聲所淹沒,一般在實驗中很難觀察到它的存在。目前國內(nèi)外對于散粒噪聲測試技術的研究取得了快速的進展,但是普遍存在干擾噪聲大、測試儀器價格昂貴等問題,難以實現(xiàn)普及應用。文中所介紹的測試系統(tǒng)是在屏蔽環(huán)境下將被測器件置于低溫裝置內(nèi),抑制了外界電磁波和熱噪聲的干擾;同時使用低噪聲前置放大器使散粒噪聲充分放大,并顯著降低系統(tǒng)背景噪聲;通過提取噪聲頻譜高頻段平均值,去除了低頻1/f噪聲的影響,使測試結果更加的準確。使用本系統(tǒng)測試短溝道MOSFET器件散粒噪聲,得到了很好的測試結果。文中的工作為散粒噪聲測試提供了一種方法,對短溝道MOSFET散粒噪聲測試結果進行了討論。

1 測試原理

對于短溝道MOSFET中散粒噪聲的測試,主要影響因素包括:外界電磁干擾、低頻1/f噪聲、熱噪聲以及測試系統(tǒng)背景噪聲等。散粒噪聲屬于微弱信號,在實際測試中外界電磁干擾對測試結果影響顯著,將整個實驗裝置放置于電磁屏蔽環(huán)境下進行測試,這樣就有效地抑制了外界電磁干擾。散粒噪聲和熱噪聲均屬于白噪聲,在室溫下由于熱噪聲的影響,一般很難測量到散粒噪聲的存在,因此需要最大限度降低熱噪聲的影響。在測試中將待測器件置于液氮環(huán)境中,在此溫度下器件熱噪聲相對于散粒噪聲可以忽略。對于器件散粒噪聲的測試,必須通過充分放大才能被數(shù)據(jù)采集卡所采集,所以要、求放大器要有足夠的增益,同時要求不能引入太大的系統(tǒng)噪聲,否則系統(tǒng)噪聲會淹沒所測器件的散粒噪聲,因此采用低噪聲高增益的前置放大器。對于短溝道MOSFET,其低頻1/f 噪聲非常顯著,它對散粒噪聲的影響很大,由于1/f 只是在低頻部分明顯,在高頻部分很小,因而可以通過提取噪聲高頻部分的平均值來降低1/f 噪聲對測試的影響,使測試結果更加的準確。據(jù)此,設計了一種低溫散粒噪聲測試系統(tǒng)。

2 測試系統(tǒng)設計及測試方案

2.1 測試系統(tǒng)設計
測試系統(tǒng),如圖1所示,主要由偏置電路、低噪聲前置放大器、數(shù)據(jù)采集和噪聲分析系統(tǒng)組成。將所有測試設備放置于雙層金屬網(wǎng)組成的屏蔽室內(nèi),可以有效的抑制外界電磁噪聲的干擾;測試系統(tǒng)低溫裝置是一個裝有液氮的杜瓦瓶,它可以提供77 K的測試溫度,這樣就有效的降低了熱噪聲的影響。Vcc1和Vcc2為電壓可調(diào)的低噪聲鎳氫直流電池組,分別為器件提供柵源電壓和漏源偏壓,電池組不能用直流電源代替,因為直流電源的噪聲比較大。

變阻器R1和R2均屬于低噪聲線繞電位器,最大阻值均為10 kΩ,分別用于柵源電壓和漏源的調(diào)節(jié)。同時為了測試更加準確,變阻器R1和R2也一并置于液氮裝置內(nèi),以降低其自身熱噪聲的影響。前置放大器采用美國EG&G普林斯頓應用研究公司制造的PARC113型低噪聲前置放大器,放大增益范圍為20~80 dB,測試帶寬為1~300 kHz,其背景噪聲很低,滿足實驗的測試要求。

數(shù)據(jù)采集和噪聲分析軟件為“XD3020電子元器件噪聲-可靠性分析系統(tǒng)”軟件,它包含5大功能:噪聲頻譜分析、器件可靠性篩選、噪聲分析診斷、時頻域子波分析、時域分析。對于散粒噪聲分析,主要用到噪聲頻譜分析模塊。
[page]
通過具體測試對系統(tǒng)進行了驗證。設置柵源電壓為0.1 V,漏源電壓為0.36 V,為了降低低頻1/f噪聲的干擾,提取電流噪聲功率譜299~300 kHz高頻段的平均值。如圖2所示,從圖中可以看出高頻段是白噪聲。在室溫下,被測器件噪聲幅值為1.2×10-15V2/Hz左右;而77 K時,在相同偏置條件下測試了樣品的噪聲,電流噪聲幅值為1.5×10-16V2/Hz左右,對比室溫和77 K時樣品噪聲,可以看出噪聲幅值降了一個數(shù)量級,通過計算可知熱噪聲被減少大約90%,可見77 K時熱噪聲被明顯抑制。同時測量了低溫下系統(tǒng)的背景噪聲,它的噪聲幅值為4×10-17V2/Hz左右,而低溫下樣品的噪聲幅值為1.5×1O-16V2/Hz,因此低溫下系統(tǒng)背景噪聲相對較小,可以忽略。本測試系統(tǒng)能滿足低溫下散粒噪聲測試的要求。

2.2 測試方案
實驗樣品選用0.18μm工藝nMOSFET器件,溝道寬長比為20μm/0.6μm,柵氧化層厚度為20 nm,閾值電壓為0.7 V。分別測試器件在亞閾區(qū)、線性區(qū)和飽和區(qū)的源漏電流散粒噪聲功率譜。具體步驟為,設置Vgs=0.1 V,使器件處在亞閾值區(qū),Ids在0.055~1 mA變化,測試器件在不同溝道電流下的電流噪聲功率譜值;再設置Vgs=1.2 V,使器件工作在反型區(qū),測試Ids在0.055~1.5 mA變化時線性區(qū)和飽和區(qū)的電流噪聲功率譜值。在功率譜提取時,取270~300 kHz頻率段電流噪聲功率譜的平均值,這樣既可以去除低頻1/f噪聲對測試結果的影響,也可以通過平均值算法使分析的測試數(shù)據(jù)更加準確。
[page]
3 測試結果及討論

圖3和圖4分別為器件工作在亞閾區(qū)和反型區(qū)條件下,電流噪聲功率譜隨漏源電流的變化情況。

由圖中可以看出,在亞閾區(qū),小漏源電流的條件下,溝道電流和電流噪聲功率譜呈現(xiàn)線性關系,證明器件在此工作條件下存在散粒噪聲。相比于長溝道MOSFET器件,短溝道器件溝道源區(qū)附件明顯存在一個勢壘,勢壘高度隨柵源電壓的增大而增大,隨漏源電壓的增大而減小。在此偏置條件下,溝道內(nèi)電場強度很小,擴散電流成分顯著,擴散電流隨機通過源極附近勢壘,引起散粒噪聲。隨著漏源電壓的增大,溝道內(nèi)電場增強,勢壘減小,漂移電流成為主要成分,散粒噪聲隨之被抑制。

在反型區(qū),小的漏源電流條件下,器件工作在線性區(qū)。如圖4所示,與亞閾區(qū)類似,可以看到明顯的散粒噪聲成分。但是隨著漏源電流的增大,在漏源電流大約為0.5μA時,器件進入飽和區(qū)。此時源區(qū)勢壘和溝道內(nèi)擴散電流成分顯著減小,因此導致由擴散電流引起的散粒噪聲減小。但此時漏端溝道正好處在夾斷點位置,載流子通過夾斷點耗盡區(qū)是彈道傳輸模式,引起了散粒噪聲的產(chǎn)生,導致散粒噪聲再次隨漏源電流的增大而增大。但隨著漏源電流的繼續(xù)增大,夾斷區(qū)長度不斷增加,載流子在夾斷區(qū)散射增強,散粒噪聲再次被抑制。

4 結束語

針對MOSFET散粒噪聲難以測量的特點,文中提出了一種低溫散粒噪聲測試方法。在屏蔽環(huán)境下,將被測器件置于低溫裝置內(nèi),有效抑制了外界電磁波和熱噪聲的干擾。采用背景噪聲充分低的放大器以及偏置器、適配器等,建立低溫散粒噪聲測試系統(tǒng)。應用本系統(tǒng)對短溝道MOSFET器件進行噪聲測試,分析該器件散粒噪聲的特性。文中的工作為器件散粒噪聲測試提供了一種方法,對短溝道MOSFET散粒噪聲特性進行了分析。

要采購電池組么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
壓控振蕩器 壓力傳感器 壓力開關 壓敏電阻 揚聲器 遙控開關 醫(yī)療電子 醫(yī)用成像 移動電源 音頻IC 音頻SoC 音頻變壓器 引線電感 語音控制 元件符號 元器件選型 云電視 云計算 云母電容 真空三極管 振蕩器 振蕩線圈 振動器 振動設備 震動馬達 整流變壓器 整流二極管 整流濾波 直流電機 智能抄表
?

關閉

?

關閉